Abstract
Temperature sensors are widely used in important fields such as daily home, medical care, and aerospace as a commonly used device for measuring temperature. Traditional temperature sensors such as thermocouples, thermal resistances, and infrared sensors are technically mature; however, they have limitations in the application environment, temperature measurement range, and temperature measurement accuracy. An eye-resolvable surface plasmon-enhanced fluorescence temperature sensor based on dual-emission Ag@SiO2@CdS/ZnS composite nanoparticle film with multiple-parameter detectable signals and high response sensitivity was proposed in this work. The temperature sensor’s x-chromaticity coordinate varied from 0.299 to 0.358 in the range of 77–297 K, while the y-chromaticity coordinate varied from 0.288 to 0.440, displaying eye-resolvable surface plasmon-enhanced fluorescence. The ratiometric response of two isolated photoluminescence (PL) peak-integrated areas located around 446 and 592 nm was found to be significantly temperature dependent, with a thermal sensitivity of 1.4% K−1, which can be used as an additional parameter to measure the precise temperature. Furthermore, the surface state emission peak intensity was linearly related to temperature, with a correlation index Adj. R-Square of 99.8%. Multiple independent temperature estimates can help with self-calibration and improve the measurement accuracy. Our findings show that the designed sensors can detect low temperatures while maintaining stability and reproducibility.
Funder
National Natural Science Foundation of China
Postdoctoral Science Foundation of China
National Key R&D Program of China
Fundamental Research Funds for the Central Universities
Nanjing Forestry University College Student Innovation Training Program
NUPTSF
Subject
General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献