Ultra-Light and Ultra-Low Thermal Conductivity of Elastic Silica Nanofibrous Aerogel with TiO2 Opacifier Particles as Filler

Author:

Yang Lixia,Ding Yang,Yang Mengmeng,Wang Yapeng,Erişen Deniz Eren,Chen Zhaofeng,Wu Qiong,Zheng Guiyuan

Abstract

The thermal radiation phenomenon is more crucial than other thermal transportation phenomena at elevated temperatures (>300 °C). Therefore, infrared radiation resistance and its performance on thermal conduction of nanofibrous aerogel with Titanium oxide (TiO2) filler have been investigated compared to control groups (silica nanofibrous aerogels with and without filler). Nanofibrous aerogel has been produced by electrospun silica nanofibers. Later, TiO2 opacifier and a non-opacifier filled materials were prepared by a solution homogenization method and then freeze-dried to obtain particle-filled nanofibrous aerogel. Moreover, the thermal radiation conductivity of the composite was calculated by numerical simulation, and the effect of the anti-infrared radiation of the TiO2 opacifier was obtained. The fascinating inhibited infrared radiation transmission performance (infrared transmittance ~67% at 3 μm) and excellent thermal insulation effect (thermal conductivity of 0.019 Wm−1K−1 at room temperature) and maximum compressive strengths (3.22 kPa) of silica nanofibrous aerogel with TiO2 opacifier were verified. Excellent thermal insulation, compression and thermal stability properties show its potential for practical application in industrial production. The successful synthesis of this material may shed light on the development of other insulative ceramic aerogels.

Funder

National Natural Science Foundation of China

Science and Technology International Cooperation Project of Jiangsu

Industry Foresight and Key Core Technology Competition Project of Jiangsu

Overseas Professor Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3