Author:
Yang Lixia,Ding Yang,Yang Mengmeng,Wang Yapeng,Erişen Deniz Eren,Chen Zhaofeng,Wu Qiong,Zheng Guiyuan
Abstract
The thermal radiation phenomenon is more crucial than other thermal transportation phenomena at elevated temperatures (>300 °C). Therefore, infrared radiation resistance and its performance on thermal conduction of nanofibrous aerogel with Titanium oxide (TiO2) filler have been investigated compared to control groups (silica nanofibrous aerogels with and without filler). Nanofibrous aerogel has been produced by electrospun silica nanofibers. Later, TiO2 opacifier and a non-opacifier filled materials were prepared by a solution homogenization method and then freeze-dried to obtain particle-filled nanofibrous aerogel. Moreover, the thermal radiation conductivity of the composite was calculated by numerical simulation, and the effect of the anti-infrared radiation of the TiO2 opacifier was obtained. The fascinating inhibited infrared radiation transmission performance (infrared transmittance ~67% at 3 μm) and excellent thermal insulation effect (thermal conductivity of 0.019 Wm−1K−1 at room temperature) and maximum compressive strengths (3.22 kPa) of silica nanofibrous aerogel with TiO2 opacifier were verified. Excellent thermal insulation, compression and thermal stability properties show its potential for practical application in industrial production. The successful synthesis of this material may shed light on the development of other insulative ceramic aerogels.
Funder
National Natural Science Foundation of China
Science and Technology International Cooperation Project of Jiangsu
Industry Foresight and Key Core Technology Competition Project of Jiangsu
Overseas Professor Project
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献