Pseudocapacitance-Enhanced Storage Kinetics of 3D Anhydrous Iron (III) Fluoride as a Cathode for Li/Na-Ion Batteries

Author:

Zhang Tao,Liu Yan,Chen Guihuan,Liu Hengjun,Han Yuanyuan,Zhai Shuhao,Zhang Leqing,Pan YuanyuanORCID,Li Qinghao,Li QiangORCID

Abstract

Transition metal fluoride (TMF) conversion cathodes, with high energy density, are recognized as promising candidates for next-generation high-energy Li/Na-ion batteries (LIBs/SIBs). Unfortunately, the poor electronic conductivity and detrimental active material dissolution of TMFs seriously limit the performance of TMF-LIBs/SIBs. A variety of FeF3-based composites are designed to improve their electrochemical characteristics. However, the storage mechanism of the conversion-type cathode for Li+ and Na+ co-storage is still unclear. Here, the storage mechanism of honeycomb iron (III) fluoride and carbon (FeF3@C) as a general cathode for LIBs/SIBs is analyzed by kinetics. In addition, the FeF3@C cathode shows high electrochemical performance in a full-cell system. The results show that the honeycomb FeF3@C shows excellent long-term cycle stability in LIBs (208.3 mA h g−1 at 1.0 C after 100 cycles with a capacity retention of 98.1%). As a cathode of SIBs, the rate performance is unexpectedly stable. The kinetic analysis reveals that the FeF3@C cathode exhibit distinct ion-dependent charge storage mechanisms and exceptional long-durability cyclic performance in the storage of Li+/Na+, benefiting from the synergistic contribution of pseudocapacitive and reversible redox behavior. The work deepens the understanding of the conversion-type cathode in Li+/Na+ storage.

Funder

National Natural Science Foundation of China

National Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3