Effects of Hall Current and Viscous Dissipation on Bioconvection Transport of Nanofluid over a Rotating Disk with Motile Microorganisms

Author:

Alzahrani Abdullah K.

Abstract

The study of rotating-disk heat-flow problems is relevant to computer storage devices, rotating machineries, heat-storage devices, MHD rotators, lubrication, and food-processing devices. Therefore, this study investigated the effects of a Hall current and motile microorganisms on nanofluid flow generated by the spinning of a disk under multiple slip and thermal radiation conditions. The Buongiorno model of a nonhomogeneous nanofluid under Brownian diffusion and thermophoresis was applied. Using the Taylor series, the effect of Resseland radiation was linearized and included in the energy equation. By implementing the appropriate transformations, the governing partial differential equations (PDEs) were simplified into a two-point ordinary boundary value problem. The classical Runge–Kutta dependent shooting method was used to find the numerical solutions, which were validated using the data available in the literature. The velocity, motile microorganism distribution, temperature, and concentration of nanoparticles were plotted and comprehensively analyzed. Moreover, the density number, Sherwood number, shear stresses, and Nusselt number were calculated. The radial and tangential velocity declined with varying values of magnetic numbers, while the concentration of nanoparticles, motile microorganism distribution, and temperature increased. There was a significant reduction in heat transfer, velocities, and motile microorganism distribution under the multiple slip conditions. The Hall current magnified the velocities and reduced the heat transfer. Thermal radiation improved the Nusselt number, while the thermal slip conditions reduced the Nusselt number.

Funder

Deanship of Scientific Research (DSR) at King Abdulaziz University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference50 articles.

1. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step;Int. J. Heat Fluid Flow,2008

2. Choi, S.U., and Eastman, J.A. (1995). Enhancing Thermal Conductivity of Fluids with Nanoparticles, Argonne National Lab. (ANL). (No. ANL/MSD/CP-84938; CONF-951135-29).

3. Convective transport in nanofluids;J. Heat Transf.,2006

4. Natural convective boundary-layer flow of a nanofluid past a vertical plate;Int. J. Therm. Sci.,2010

5. The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid;Int. J. Heat Mass Transf.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3