Influence of the Fiber Volume Content on the Durability-Related Properties of Polypropylene-Fiber-Reinforced Concrete

Author:

Wang ChenfeiORCID,Guo Zixiong,Niu Ditao

Abstract

Polypropylene-fiber-reinforced concrete impacts the early shrinkage during the plastic stage of concrete, and the fiber volume content influences the durability-related properties of concrete. The purpose of this paper was to investigate the influence of fiber volume content on the mechanical properties, durability, and chloride ion penetration of polypropylene-fiber-reinforced concrete in a chloride environment. Tests were carried out on cubes and cylinders of polypropylene-fiber-reinforced concrete with polypropylene fiber contents ranging from 0% to 0.5%. Extensive data from flexural strength testing, dry–wet testing, deicer frost testing, and chloride penetration testing were recorded and analyzed. The test results show that the addition of the fiber improves the failure form of the concrete specimens, and 0.1% fiber content maximizes the compactness of the concrete. The flexural strength of specimen C2 with 0.1% fiber shows the highest strength obtained herein after freeze–thaw cycling, and the water absorption of specimen C2 is also the lowest after dry–wet cycling. The results also indicate that increasing the fiber volume content improves the freeze–thaw resistance of the concrete in a chloride environment. Chlorine ions migrate with the moisture during dry–wet and freeze–thaw cycling. The chlorine ion diffusion coefficient (Dcl) increases with increasing fiber content, except for that of specimen C2 in a chloride environment. The Dcl during freeze–thaw cycling is much higher than that during dry–wet cycling.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3