Author:
Sun Xiaoyong,Su Shaojing,Zuo Zhen,Guo Xiaojun,Tan Xiaopeng
Abstract
In this paper, a blind modulation classification method based on compressed sensing using a high-order cumulant and cyclic spectrum combined with the decision tree–support vector machine classifier is proposed to solve the problem of low identification accuracy under single-feature parameters and reduce the performance requirements of the sampling system. Through calculating the fourth-order, eighth-order cumulant and cyclic spectrum feature parameters by breaking through the traditional Nyquist sampling law in the compressed sensing framework, six different cognitive radio signals are effectively classified. Moreover, the influences of symbol length and compression ratio on the classification accuracy are simulated and the classification performance is improved, which achieves the purpose of identifying more signals when fewer feature parameters are used. The results indicate that accurate and effective modulation classification can be achieved, which provides the theoretical basis and technical accumulation for the field of optical-fiber signal detection.
Funder
National Key Research and Development Program
Natural Science Foundation of Hunan Province
Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献