Dispersibility and Size Control of Silver Nanoparticles with Anti-Algal Potential Based on Coupling Effects of Polyvinylpyrrolidone and Sodium Tripolyphosphate

Author:

Wang Mingshuai,Li Haibo,Li Yinghua,Mo Fan,Li Zhe,Chai Rui,Wang Hongxuan

Abstract

In nearly all the cases of biotoxicity studies of silver nanoparticles (AgNPs), AgNPs used often have general dispersibility and wide size distribution, which may inevitably generate imprecise results. Herein, a kind of synthesis method by coupling effects of polyvinylpyrrolidone (PVP) and sodium tripolyphosphate (STPP) was proposed, in order to prepare AgNPs with better dispersibility and a stable size. Based on this, the preparation mechanism of AgNPs and the potential anti-algae toxicity were analyzed. UV-vis analysis showed that the particle size distribution of AgNPs prepared by co-protective agents was more uniform. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) were used to confirm that the obtained nano silver was of a high purity and stable size (~30 nm in diameter). Zeta potential and Fourier transform infrared spectroscopy (FTIR) analysis results indicated the synthesis mechanism of AgNPs by co-protective agents, more precisely, PVP limited the polynegative effect and prevented the linear induction of P3O105− produced by STPP during the growth of silver nuclei. Subsequently, Chlorella and Scenedesmus obliquus were utilized to test the toxicity of AgNPs, confirming that AgNPs synthesized through co-protective agents have potential inhibitory ability on algae, but not severe. This study provides a basic theory for the induction of synthetic AgNPs by various factors in the natural environment and a scientific reference for the environmental risk assessment.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3