Molecular Adsorption of NH3 and NO2 on Zr and Hf Dichalcogenides (S, Se, Te) Monolayers: A Density Functional Theory Study

Author:

Raya Shimeles Shumi,Ansari Abu Saad,Shong BonggeunORCID

Abstract

Due to their atomic thicknesses and semiconducting properties, two-dimensional transition metal dichalcogenides (TMDCs) are gaining increasing research interest. Among them, Hf- and Zr-based TMDCs demonstrate the unique advantage that their oxides (HfO2 and ZrO2) are excellent dielectric materials. One possible method to precisely tune the material properties of two-dimensional atomically thin nanomaterials is to adsorb molecules on their surfaces as non-bonded dopants. In the present work, the molecular adsorption of NO2 and NH3 on the two-dimensional trigonal prismatic (1H) and octahedral (1T) phases of Hf and Zr dichalcogenides (S, Se, Te) is studied using dispersion-corrected periodic density functional theory (DFT) calculations. The adsorption configuration, energy, and charge-transfer properties during molecular adsorption are investigated. In addition, the effects of the molecular dopants (NH3 and NO2) on the electronic structure of the materials are studied. It was observed that the adsorbed NH3 donates electrons to the conduction band of the Hf (Zr) dichalcogenides, while NO2 receives electrons from the valance band. Furthermore, the NO2 dopant affects than NH3 significantly. The resulting band structure of the molecularly doped Zr and Hf dichalcogenides are modulated by the molecular adsorbates. This study explores, not only the properties of the two-dimensional 1H and 1T phases of Hf and Zr dichalcogenides (S, Se, Te), but also tunes their electronic properties by adsorbing non-bonded dopants.

Funder

Hongik University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to Two‐Dimensional Nanomaterials;Two‐Dimensional Nanomaterials‐Based Polymer Nanocomposites;2024-05-20

2. Low-cost network-enabled dissolved oxygen sensor: Sensor linearity characteristic;Materials Today: Proceedings;2024-05

3. Thermal atomic layer deposition of aluminum oxide, nitride, and oxynitride: A mechanistic investigation;AIP Advances;2024-03-01

4. Study of Low-Cost Network-Enabled dissolved oxygen sensor;Materials Today: Proceedings;2024-03

5. Sensor technology in fish markers: A review;Materials Today: Proceedings;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3