Densification-Induced Structure Changes in Basolite MOFs: Effect on Low-Pressure CH4 Adsorption

Author:

Ursueguía DavidORCID,Díaz Eva,Ordóñez SalvadorORCID

Abstract

Metal-organic frameworks’ (MOFs) adsorption potential is significantly reduced by turning the original powder into pellets or granules, a mandatory step for their use at industrial scale. Pelletization is commonly performed by mechanical compression, which often induces the amorphization or pressure-induced phase transformations. The objective of this work is the rigorous study of the impact of mechanical pressure (55.9, 111.8 and 186.3 MPa) onto three commercial materials (Basolite C300, F300 and A100). Phase transformations were determined by powder X-ray diffraction analysis, whereas morphological changes were followed by nitrogen physisorption. Methane adsorption was studied in an atmospheric fixed bed. Significant crystallinity losses were observed, even at low applied pressures (up to 69.9% for Basolite C300), whereas a structural change occurred to Basolite A100 from orthorhombic to monoclinic phases, with a high cell volume reduction (13.7%). Consequently, adsorption capacities for both methane and nitrogen were largely reduced (up to 53.6% for Basolite C300), being related to morphological changes (surface area losses). Likewise, the high concentration of metallic active centers (Basolite C300), the structural breathing (Basolite A100) and the mesopore-induced formation (Basolite F300) smooth the dramatic loss of capacity of these materials.

Funder

Research Fund for Coal and Steel

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference76 articles.

1. Global Energy Outlook 2019: The Next Generation of Energy;Newell,2019

2. Coronavirus Has Reminded Us How Much We Depend on Electricitywww.weforum.org/agenda/2020/03/coronavirus-crisis-future-of-energy

3. Methane purification by adsorptive processes on MIL-53(Al)

4. Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas

5. Cryogenic pressure temperature swing adsorption process for natural gas upgrade

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3