Author:
Tsai Cheng-Mu,King Tzu-Chyang,Fang Yi-Chin,Hsueh Nai-Wie,Lin Che-Wei
Abstract
This paper proposes a new optical design that will cooperate with 3D image technology, infrared spectrum technology, future medical diagnostics, the cloud, and big data analysis. We first conducted image recognition experiments to compare the pros and cons of 2D and 3D frameworks in order to make sure that the optical and mechanical framework of a glasses-type 3D ophthalmoscope would be a better choice. The experimental results showed that a 3D image recognition rate (90%) was higher than a 2D image recognition rate (84%), and hence the 3D mechanism design was selected. The glasses-type 3D ophthalmoscope design is primarily based on the specification of indirect ophthalmoscope requirements and two working spectrums: a near infrared and a visible spectrum. The design is a 2.5x magnification fixed focal telecentric relay system with a right-angle prism, which uses a large aperture to increase the amount of incident light (F/# = 2.0). As the infrared spectrums that have better transmittance towards human eye tissue are 965 nm and 985 nm, so that we took account of the visible spectrum and the near-infrared spectrum simultaneously to increase the basis of the physician’s diagnosis. In this research, we conclude that a wearable ophthalmoscope can be designed optically and mechanically with 3D technology, an infrared and a visible working spectrum and further, possibly in cooperation with the cloud and big data analysis.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献