Aerodynamic Design and Off-design Performance Analysis of a Multi-Stage S-CO2 Axial Turbine Based on Solar Power Generation System

Author:

Shi Dongbo,Zhang Lei,Xie Yonghui,Zhang DiORCID

Abstract

Solar energy is an inexhaustible source of clean energy. Meanwhile, supercritical carbon dioxide has excellent characteristics such as easy access to critical conditions, high density, and low viscosity, making it one of the most popular circulating working fluids in solar power generation technology. However, solar power generation systems are severely affected by geographical distribution, seasonal variations and day-night cycles. Therefore, efficient and adaptable turbine design is the key to realize supercritical carbon dioxide solar power generation technology. In this paper, the initial thermodynamic design of 10 MW S-CO2 three-stage axial turbine is completed by self-developed thermodynamic design software, and the key thermodynamic and structural parameters are obtained. The optimal design of turbine and its aerodynamic performance at rated operating conditions are obtained by using a three-dimensional aerodynamic numerical analysis and optimization method. At last, nine off-design conditions are analyzed in detail. The results show that the designed turbine output power is 10.37 MW and the total-total efficiency is 91.60%. It can operate efficiently and steadily in the range of output power from 16.2% to 155.9%. It can adapt to the variable operating conditions of solar power generation system and meet the design requirements.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. Experimental setup to measure critical properties of pure and binary mixtures and their densities at different pressures and temperatures

2. Research progress on supercritical carbon dioxide power cycle system and its power unit;Feng;Therm. Turb.,2016

3. Supercritical carbon dioxide cycles for power generation: A review

4. Introduction of supercritical sCO2 power generation technology;Gao;J. Nav. Univ. Eng.,2015

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3