Successful Release of Voriconazole and Flavonoids from MAPLE Deposited Bioactive Surfaces

Author:

Negut Irina,Visan Anita,Popescu Camelia,Cristescu Rodica,Ficai Anton,Grumezescu Alexandru,Chifiriuc Mariana,Boehm Ryan,Yamaleyeva Dina,Taylor Michael,Narayan Roger,Chrisey Douglas

Abstract

We explored the potential of biomimetic thin films fabricated by means of matrix-assisted pulsed laser evaporation (MAPLE) for releasing combinations of active substances represented by flavonoids (quercetin dihydrate and resveratrol) and antifungal compounds (amphotericin B and voriconazole) embedded in a polyvinylpyrrolidone biopolymer; the antifungal activity of the film components was evaluated using in vitro microbiological assays. Thin films were deposited using a pulsed KrF* excimer laser source which were structurally characterized using atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). High-quality thin films with chemical structures similar to dropcast ones were created using an optimum laser fluence of ~80 mJ/cm2. Bioactive substances were included within the polymer thin films using the MAPLE technique. The results of the in vitro microbiology assay, which utilized a modified disk diffusion approach and were performed using two fungal strains (Candida albicans American Type Culture Collection (ATCC) 90028 and Candida parapsilosis American Type Culture Collection (ATCC) 22019), revealed that voriconazole was released in an active form from the polyvinylpyrrolidone matrix. The results of this study show that the MAPLE-deposited bioactive thin films have a promising potential for use in designing combination devices, such as drug delivery devices, and medical device surfaces with antifungal activity.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3