Sparse Envelope Spectra for Feature Extraction of Bearing Faults Based on NMF

Author:

Liang Lin,Shan Lei,Liu Fei,Niu Ben,Xu Guanghua

Abstract

Periodic impulses and the oscillation response signal are the vital feature indicators of rolling bearing faults. However, finding the suitable feature frequency band is usually difficult due to the interferences of other components and multiple resonance regions. According to the characteristics of non-negative matrix factorization (NMF) on a spectrogram, the feature extraction method from a sparse envelope spectrum for rolling bearing faults is proposed in this paper. On the basis of the time–frequency distribution (TFD) of the periodic transient oscillations, the basic matrix can be interpreted as the spectral bases, and the time weight matrix corresponding to spectral bases can be extracted by NMF. Because the bases and the weights have a one-to-one correspondence, the frequency band filtering with the basic component and the time domain envelope of the weight vector are calculated respectively. Then, the sparse envelope spectrum can be derived by the inner product of the above results. The effectiveness of the proposed method is verified by simulations and experiments. Compared with band-pass filtering and spectral kurtosis methods, and considering the time weights and corresponding the spectral bases for the periodic transient oscillations, the weak fault-rated feature can be enhanced in the sparse spectrum, while other components and noise are weakened. Therefore, the proposed method can reduce the requirement of selecting frequency band filtering.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Towards automatic detection of local bearing defects in rotating machines

2. Detection of defects in rolling element bearings by vibration monitoring;Tandon;Indian J. Mech. Eng. Div.,1993

3. Detection of Developing Bearing Failures by Means of Vibration;Reif,1989

4. Rolling element bearing fault diagnosis using wavelet packets;Nikolaou;NDT & E Int.,2002

5. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3