Gear Pitting Fault Diagnosis Using Integrated CNN and GRU Network with Both Vibration and Acoustic Emission Signals

Author:

Li Xueyi,Li Jialin,Qu Yongzhi,He DavidORCID

Abstract

This paper deals with gear pitting fault diagnosis problem and presents a method by integrating convolutional neural network (CNN) and gated recurrent unit (GRU) networks with vibration and acoustic emission signals to solve the problem. The presented method first trains a one-dimensional CNN with acoustic emission signals and a GRU network with vibration signals. Then the gear pitting fault features obtained by the two networks are concatenated to form a deep learning structure for gear pitting fault diagnosis. Seven different gear pitting conditions are used to test the feasibility of the presented method. The diagnosis result of the gear pitting fault shows that the accuracy of the presented method reaches above 98% with only a relatively small number of training samples. In comparison with the results using CNN or GRU network alone, the presented method gives more accurate diagnosis results. By comparing the results of different loads and learning rates, the robustness of the presented method for gear pitting fault diagnosis is proved. Moreover, the presented deep structure can be easily extended to more other sensor input signals for gear pitting fault diagnosis in the future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3