Abstract
Pharmaceutical residues, and other organic micropollutants that pass naturally through the human body into sewage, are in many cases unaffected by treatment processes at conventional wastewater treatment plants (WWTPs). Accumulated in the environment, however, they can significantly affect aquatic ecosystems. The present study provides an evaluation of a treatment system for the removal of pharmaceutical residues and other micropollutants. The system is based on a Membrane Bioreactor (MBR), including ultrafiltration (UF), followed by a biofilter using granulated active carbon (GAC) as filter material. It was found that all investigated micropollutants, such as pharmaceutical residues, phenolic compounds, bacteria and microplastic particles, present in wastewater, could be removed by the treatment system to below detection limits or very low concentrations. This shows that the combination of filtration, adsorption and biodegradation provides a broad and efficient removal of micropollutants and effects. The tested treatment configuration appears to be one of the most sustainable solutions that meets today’s and future municipal sewage treatment requirements. The treatment system delivers higher resource utilization and security than other advanced treatment systems including solely GAC-filters without biology.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献