A Brief Review on Cerium Oxide (CeO2NPs)-Based Scaffolds: Recent Advances in Wound Healing Applications

Author:

Allu Ishita1,Kumar Sahi Ajay2ORCID,Kumari Pooja3,Sakhile Karunya4,Sionkowska Alina25ORCID,Gundu Shravanya1ORCID

Affiliation:

1. Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, Telangana, India

2. Faculty of Chemistry, Nicolaus Copernicus University in Torun, Jurija Gagarina 11, 87-100 Toruń, Poland

3. Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India

4. Department of Mechanical & Industrial Engineering, National University of Science and Technology, Muscat 2322, Oman

5. Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland

Abstract

The process of wound healing is complex and involves the interaction of multiple cells, each with a distinct role in the inflammatory, proliferative, and remodeling phases. Chronic, nonhealing wounds may result from reduced fibroblast proliferation, angiogenesis, and cellular immunity, often associated with diabetes, hypertension, vascular deficits, immunological inadequacies, and chronic renal disease. Various strategies and methodologies have been explored to develop nanomaterials for wound-healing treatment. Several nanoparticles such as gold, silver, cerium oxide and zinc possess antibacterial properties, stability, and a high surface area that promotes efficient wound healing. In this review article, we investigate the effectiveness of cerium oxide nanoparticles (CeO2NPs) in wound healing—particularly the effects of reducing inflammation, enhancing hemostasis and proliferation, and scavenging reactive oxygen species. The mechanism enables CeO2NPs to reduce inflammation, modulate the immunological system, and promote angiogenesis and tissue regeneration. In addition, we investigate the efficacy of cerium oxide-based scaffolds in various wound-healing applications for creating a favorable wound-healing environment. Cerium oxide nanoparticles (CeO2NPs) exhibit antioxidant, anti-inflammatory, and regenerative characteristics, enabling them to be ideal wound healing material. Investigations have shown that CeO2NPs can stimulate wound closure, tissue regeneration, and scar reduction. CeO2NPs may also reduce bacterial infections and boost wound-site immunity. However, additional study is needed to determine the safety and efficacy of CeO2NPs in wound healing and their long-term impacts on human health and the environment. The review reveals that CeO2NPs have promising wound-healing properties, but further study is needed to understand their mechanisms of action and ensure their safety and efficacy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3