A Simulation Study of Triband Low SAR Wearable Antenna

Author:

Abdulkawi Wazie M.1ORCID,Masood Asad2,Nizam-Uddin N.23,Alnakhli Mohammad1ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering in Wadi Addawasir, Prince Sattam Bin Abdulaziz University, Wadi Addawasir 11991, Saudi Arabia

2. Electrical Engineering Department, HITEC University, Taxila 47080, Punjab, Pakistan

3. Biomedical Engineering Department, HITEC University, Taxila 47080, Punjab, Pakistan

Abstract

The proposed paper presents a flexible antenna that is capable of operating in several frequency bands, namely 2.45 GHz, 5.8 GHz, and 8 GHz. The first two frequency bands are frequently utilized in industrial, scientific, and medical (ISM) as well as wireless local area network (WLAN) applications, whereas the third frequency band is associated with X-band applications. The antenna, with dimensions of 52 mm × 40 mm (0.79 λ × 0.61 λ), was designed using a 1.8 mm thick flexible kapton polyimide substrate with a permittivity of 3.5. Using CST Studio Suite, full-wave electromagnetic simulations were conducted, and the proposed design achieved a reflection coefficient below −10 dB for the intended frequency bands. Additionally, the proposed antenna achieves an efficiency value of up to 83% and appropriate values of gain in the desired frequency bands. In order to quantify the specific absorption rate (SAR), simulations were conducted by mounting the proposed antenna on a three-layered phantom. The SAR1g values recorded for the frequency bands of 2.45 GHz, 5.8 GHz, and 8 GHz were 0.34, 1.45, and 1.57 W/Kg respectively. These SAR values were observed to be significantly lower than the 1.6 W/Kg threshold set by the Federal Communication Commission (FCC). Moreover, the performance of the antenna was evaluated by simulating various deformation tests.

Funder

the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3