Microfluidic Chips: Emerging Technologies for Adoptive Cell Immunotherapy

Author:

Tian Yishen1,Hu Rong1,Du Guangshi1,Xu Na2

Affiliation:

1. Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China

2. Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China

Abstract

Adoptive cell therapy (ACT) is a personalized therapy that has shown great success in treating hematologic malignancies in clinic, and has also demonstrated potential applications for solid tumors. The process of ACT involves multiple steps, including the separation of desired cells from patient tissues, cell engineering by virus vector systems, and infusion back into patients after strict tests to guarantee the quality and safety of the products. ACT is an innovative medicine in development; however, the multi-step method is time-consuming and costly, and the preparation of the targeted adoptive cells remains a challenge. Microfluidic chips are a novel platform with the advantages of manipulating fluid in micro/nano scales, and have been developed for various biological research applications as well as ACT. The use of microfluidics to isolate, screen, and incubate cells in vitro has the advantages of high throughput, low cell damage, and fast amplification rates, which can greatly simplify ACT preparation steps and reduce costs. Moreover, the customizable microfluidic chips fit the personalized demands of ACT. In this mini-review, we describe the advantages and applications of microfluidic chips for cell sorting, cell screening, and cell culture in ACT compared to other existing methods. Finally, we discuss the challenges and potential outcomes of future microfluidics-related work in ACT.

Funder

Guizhou Provincial Education Department Young Science and Technology Talent Development Project

High-level Talents of Guizhou Medical University Scientific Research Start-up Fund Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3