Low-Profile and Wider-Angle Beam Tilting Parasitic Array Resonator Antenna with Optimized Deflected Ground Plane on FR-4 Substrate

Author:

Mohd Zainudin Nur Ain Fatihah12,Osman Mohamed Nasrun12ORCID,Sabapathy Thennarasan12ORCID,Jusoh Muzammil12ORCID,Mohd Yasin Mohd Najib12ORCID,A. Rahim Mohamad Kamal3

Affiliation:

1. Faculty of Electronic Engineering & Technology, UniMAP Pauh Putra Main Campus, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia

2. Advanced Communication Engineering (ACE) Centre of Excellence, Universiti Malaysia Perlis, No 15 & 17, Jalan Tiga, Pengkalan Jaya Business Centre, Kangar 01000, Malaysia

3. Advanced RF & Microwave Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTMJB), Johor Bahru 81310, Malaysia

Abstract

A low-profile and wide-angle radiation pattern reconfigurable antenna is designed, analyzed, and fabricated for wireless sensor network (WSN) applications, which operate at a 2.5-GHz frequency. This work aims to minimize the number of switches and optimize the parasitic size and ground plane to achieve a steering angle of more than 30° using a low cost-high loss FR-4 substrate. The radiation pattern reconfigurability is achieved by introducing four parasitic elements surrounding a driven element. In this work, the single driven element is fed by a coaxial feed, while other parasitic elements are integrated with the RF switches on the FR-4 as the substrate with dimensions of 150 × 100 mm (1.67 × 2.5 λo). The RF switches of the parasitic elements are surface mounted on the substrate. By truncating and modifying the ground plane, the beam steering can be achieved at more than 30° on the xz plane. Additionally, the proposed antenna can attain an average tilt angle of more than 10° on the yz plane. The antenna is also capable of attaining other important results, such as a fractional bandwidth of 4% at 2.5 GHz and an average gain of 2.3 dBi for all configurations. By adopting the ON/OFF condition on the embedded RF switches, the beam steering can be controlled at a certain angle, thus increasing the tilting angle of the wireless sensor networks. With such a good performance, the proposed antenna has high potential to serve as a base station in WSN applications.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Beam Steering Resonator Antenna for 5G using Switch-Coupling Parasitic Element;2023 IEEE International Symposium On Antennas And Propagation (ISAP);2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3