Remaining Useful Lifetime Prediction Based on Extended Kalman Particle Filter for Power SiC MOSFETs

Author:

Wu Wei1,Gu Yongqian1,Yu Mingkang1ORCID,Gao Chongbing1,Chen Yong1ORCID

Affiliation:

1. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Nowadays, the performance of silicon-based devices is almost approaching the physical limit of their materials, which have difficulty meeting the needs of modern high-power applications. The SiC MOSFET, as one of the important third-generation wide bandgap power semiconductor devices, has received extensive attention. However, numerous specific reliability issues exist for SiC MOSFETs, such as bias temperature instability, threshold voltage drift, and reduced short-circuit robustness. The remaining useful life (RUL) prediction of SiC MOSFETs has become the focus of device reliability research. In this paper, a RUL estimation method using the Extended Kalman Particle Filter (EPF) based on an on-state voltage degradation model for SiC MOSFETs is proposed. A new power cycling test platform is designed to monitor the on-state voltage of SiC MOSFETs used as the failure precursor. The experimental results show that the RUL prediction error decreases from 20.5% of the traditional Particle Filter algorithm (PF) algorithm to 11.5% of EPF with 40% data input. The life prediction accuracy is therefore improved by about 10%.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized Fault Diagnosis-Driven RUL Prediction for Lithium-Ion Batteries using Multivariate LSTM;2024 International Conference on Control, Automation and Diagnosis (ICCAD);2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3