Affiliation:
1. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract
Nowadays, the performance of silicon-based devices is almost approaching the physical limit of their materials, which have difficulty meeting the needs of modern high-power applications. The SiC MOSFET, as one of the important third-generation wide bandgap power semiconductor devices, has received extensive attention. However, numerous specific reliability issues exist for SiC MOSFETs, such as bias temperature instability, threshold voltage drift, and reduced short-circuit robustness. The remaining useful life (RUL) prediction of SiC MOSFETs has become the focus of device reliability research. In this paper, a RUL estimation method using the Extended Kalman Particle Filter (EPF) based on an on-state voltage degradation model for SiC MOSFETs is proposed. A new power cycling test platform is designed to monitor the on-state voltage of SiC MOSFETs used as the failure precursor. The experimental results show that the RUL prediction error decreases from 20.5% of the traditional Particle Filter algorithm (PF) algorithm to 11.5% of EPF with 40% data input. The life prediction accuracy is therefore improved by about 10%.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献