RSM-Based Preparation and Photoelectrocatalytic Performance Study of RGO/TiO2 NTs Photoelectrode

Author:

Zuo Jinlong,Yuan SiyingORCID,Li Yiwen,Tan Chong,Xia Zhi,Yang Shaodong,Yu Shiyou,Li Junsheng

Abstract

In this paper, reduced graphene oxide (RGO) was prepared by a modified Hummers method and chemical reduction method, and an RGO/TiO2 NTs (RGO/TiO2 nanotubes) photoelectrode was prepared by the electrochemical deposition method. The as-prepared RGO/TiO2 NTs were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), and their photocatalytic activities were investigated by measuring the degradation of methylene blue (MB) under simulated solar light irradiation. The SEM and XRD results indicated that the original tubular structure of TiO2-NTs was not changed after RGO modification. The surface of the TiO2 NTs photoelectrode was covered with a non-uniform, flake-shaped reduced graphene oxide film. The thickness of the RGO/TiO2 NTs was increased to about 22.60 nm. The impedance of the RGO/TiO2 NTs was smaller than that of the TiO2 NT photoelectrode. The optimal preparation conditions of RGO/TiO2 NT photoelectrodes were investigated by using a single factor method and response surface method. The best preparation conditions were as follows: deposition potential at 1.19 V, deposition time of 10.27 min, and deposition temperature at 24.94 °C.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3