Abstract
Betulin has a broad spectrum of biological and pharmacological properties, such as anticancer, antibacterial, antifungal, and antiviral. Unfortunately, the low bioavailability makes it difficult to use in medicine. The introduction of a triazole ring to the betulin structure leads to the obtainment of new compounds with higher activity and better bioavailability. The title compound was obtained from the triazole derivative of betulin by conversion of the hydroxyl group to an ester moiety in the Steglich reaction. The chemical structure of the hybrid was characterized by nuclear magnetic resonance (1H NMR, 13C NMR, HSQC, HMBC) and HRMS spectroscopy.
Funder
niversity of Silesia in Katowice, Poland
Subject
Organic Chemistry,Physical and Theoretical Chemistry,Biochemistry