A Low-Cost Hardware/Software Platform for Lossless Real-Time Data Acquisition from Imaging Spectrometers

Author:

Fernández-Conde Jesús1ORCID

Affiliation:

1. Signal Theory, Communications, Telematics Systems and Computation Department, Fuenlabrada Engineering School, Rey Juan Carlos University, 28942 Fuenlabrada, Madrid, Spain

Abstract

In real-time data-intensive applications, achieving real-time data acquisition from sensors and simultaneous storage with the necessary performance is challenging, especially if “no-data-lost” requirements are present. Ad hoc solutions are generally expensive and suffer from a lack of modularity and scalability. In this work, we present a hardware/software platform built using commercial off-the-shelf elements, designed to acquire and store digitized signals captured from imaging spectrometers capable of supporting real-time data acquisition with stringent throughput requirements (sustained rates in the boundaries of 100 MBytes/s) and simultaneous information storage in a lossless fashion. The correct combination of commercial hardware components with a properly configured and optimized multithreaded software application has satisfied the requirements in determinism and capacity for processing and storing large amounts of information in real time, keeping the economic cost of the system low. This real-time data acquisition and storage system has been tested in different conditions and scenarios, being able to successfully capture 100,000 1 Mpx-sized images generated at a nominal speed of 23.5 MHz (input throughput of 94 Mbytes/s, 4 bytes acquired per pixel) and store the corresponding data (300 GBytes of data, 3 bytes stored per pixel) concurrently without any single byte of information lost or altered. The results indicate that, in terms of throughput and storage capacity, the proposed system delivers similar performance to data acquisition systems based on specialized hardware, but at a lower cost, and provides more flexibility and adaptation to changing requirements.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3