Wavelet-Prototypical Network Based on Fusion of Time and Frequency Domain for Fault Diagnosis

Author:

Wang YuORCID,Chen Lei,Liu Yang,Gao Lipeng

Abstract

Neural networks for fault diagnosis need enough samples for training, but in practical applications, there are often insufficient samples. In order to solve this problem, we propose a wavelet-prototypical network based on fusion of time and frequency domain (WPNF). The time domain and frequency domain information of the vibration signal can be sent to the model simultaneously to expand the characteristics of the data, a parallel two-channel convolutional structure is proposed to process the information of the signal. After that, a wavelet layer is designed to further extract features. Finally, a prototypical layer is applied to train this network. Experimental results show that the proposed method can accurately identify new classes that have never been used during the training phase when the number of samples in each class is very small, and it is far better than other traditional machine learning models in few-shot scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3