Abstract
Bioactive glasses (BG) possess significant bone-bonding and osteogenic properties that support their use for bone defects repair in orthopaedic and dental procedures. Recent advancement enables the manufacturing of BG-based scaffolds providing structural support during bone regeneration. Despite the wide number of studies on BG and BG-based materials, little information on their aging mechanisms and shelf life is available in the literature. In this study, the evolution of chemical species on BG-based foams was investigated via accelerated tests in the presence of CO2 and humidity. The aging process led to the formation of carbonates (Na2CO3 and CaCO3) and hydrocarbonates (NaHCO3). The amount and composition of nucleated species evolved with time, affecting the structure, properties, and bioactivity of the scaffolds. This study provides a first structured report of aging effects on the structure and chemico-physical properties of bioactive glass-based scaffolds, offering an insight about the importance of their storage and packaging.
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献