Abstract
Initial leaching characteristics of simulated nuclear waste immobilized in three alkali- borosilicate glasses (ABS-waste) were studied. The effects of matrix composition on the containment performance and degradation resistance measures were evaluated. Normalized release rates are in conformance with data reported in the literature. High Li and Mg loadings lead to the highest initial de-polymerization of sample ABS-waste (17) and contributed to its thermodynamic instability. Ca stabilizes non-bridging oxygen (NBO) and reduces the thermodynamic instability of the modified matrix. An exponential temporal change in the alteration thickness was noted for samples ABS-waste (17) and Modified Alkali-Borosilicate (MABS)-waste (20), whereas a linear temporal change was noted for sample ABS-waste (25). Leaching processes that contribute to the fractional release of all studied elements within the initial stage of glass corrosion were quantified and the main controlling leach process for each element was identified. As the waste loading increases, the contribution of the dissolution process to the overall fractional release of structural elements decreases by 43.44, 5.05, 38.07, and 52.99% for Si, B, Na, and Li respectively, and the presence of modifiers reduces this contribution for all the studied metalloids. The dissolution process plays an important role in controlling the release of Li and Cs, and this role is reduced by increasing the waste loading.
Subject
General Materials Science
Reference46 articles.
1. Radioactive pollution and control;Abdel Rahman,2014
2. Introductory chapter: Safety aspects in nuclear engineering;Abdel Rahman,2018
3. Cementitious Materials for Nuclear Waste Immobilisation;Abdel Rahman,2014
4. Assessment of synthetic zeolite Na A–X as sorbing barrier for strontium in a radioactive disposal facility
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献