Preparation and Characterization of Gradient Compressed Porous Metal for High-Efficiency and Thin-Thickness Acoustic Absorber

Author:

Yang Xiaocui,Shen Xinmin,Bai Panfeng,He Xiaohui,Zhang Xiaonan,Li Zhizhong,Chen Liang,Yin Qin

Abstract

Increasing absorption efficiency and decreasing total thickness of the acoustic absorber is favorable to promote its practical application. Four compressed porous metals with compression ratios of 0%, 30%, 60%, and 90% were prepared to assemble the four-layer gradient compressed porous metals, which aimed to develop the acoustic absorber with high-efficiency and thin thickness. Through deriving structural parameters of thickness, porosity, and static flow resistivity for the compressed porous metals, theoretical models of sound absorption coefficients of the gradient compressed porous metals were constructed through transfer matrix method according to the Johnson–Champoux–Allard model. Sound absorption coefficients of four-layer gradient compressed porous metals with the different permutations were theoretically analyzed and experimentally measured, and the optimal average sound absorption coefficient of 60.33% in 100–6000 Hz was obtained with the total thickness of 11 mm. Sound absorption coefficients of the optimal gradient compressed porous metal were further compared with those of the simple superposed compressed porous metal, which proved that the former could obtain higher absorption efficiency with thinner thickness and fewer materials. These phenomena were explored by morphology characterizations. The developed high-efficiency and thin-thickness acoustic absorber of gradient compressed porous metal can be applied in acoustic environmental detection and industrial noise reduction.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Hong Kong Scholars Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3