Abstract
High-temperature conditions drastically compromise the physical properties of cement, especially, its strengths. In this work, the influence of adding nanoclay (NC) particles to Saudi class G oil well cement (OWC) strength retrogression resistance under high-temperature condition (300 °C) is evaluated. Six cement slurries with different concentrations of silica flour (SF) and NC were prepared and tested under conditions of 38 °C and 300 °C for different time periods (7 and 28 days) of curing. The changes in the cement matrix compressive and tensile strengths, permeability, loss in the absorbed water, and the cement slurry rheology were evaluated as a function of NC content and temperature, the changes in the structure of the cement surfaces were investigated through the optical microscope. The results revealed that the use of NC (up to 3% by weight of cement (BWOC)) can prevent the OWC deterioration under extremely high-temperature conditions. Incorporating more than 3% of NC severely damaged the cement matrix microstructure due to the agglomeration of the nanoparticles. Incorporation of NC particles increased all the cement slurry rheological properties.
Subject
General Materials Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献