Author:
Duan Zeqing,Wu Yunfan,Lin Jie,Wang Laisen,Peng Dong-Liang
Abstract
Lithium cobalt oxide (LCO) cathode has been widely applied in 3C products (computer, communication, and consumer), and LCO films are currently the most promising cathode materials for thin-film lithium batteries (TFBs) due to their high volumetric energy density and favorable durability. Most LCO thin films are fabricated by physical vapor deposition (PVD) techniques, while the influence of preparation on the materials’ properties and electrochemical performance has not been highlighted. In this review, the dominant effects (heating, substrate, power, atmosphere, etc.) on LCO thin films are summarized, and the LCO thin films fabricated by other techniques (spin coating, sol–gel, atomic layer deposition, pulsed laser deposition, etc.) are outlined. Moreover, the modification strategies including bulk doping and surface coating for powder and thin-film LCO electrodes are discussed in detail. This review may pave the way for developing novel, durable, and high-performance LCO thin films by versatile methods for TFB and other energy storage devices.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province of China
Fundamental Research Funds for the Central Universities of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献