Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach

Author:

Aljabri HammamORCID,Silva MickaelORCID,Houidi Moez Ben,Liu Xinlei,Allehaibi MoazORCID,Almatrafi FahadORCID,AlRamadan Abdullah S.,Mohan Balaji,Cenker Emre,Im Hong G.

Abstract

Hydrogen is a promising future fuel to enable the transition of transportation sector toward carbon neutrality. The direct utilization of H2 in internal combustion engines (ICEs) faces three major challenges: high NOx emissions, severe pressure rise rates, and pre-ignition at mid to high loads. In this study, the potential of H2 combustion in a truck-size engine operated in spark ignition (SI) and pre-chamber (PC) mode was investigated. To mitigate the high pressure rise rate with the SI configuration, the effects of three primary parameters on the engine combustion performance and NOx emissions were evaluated, including the compression ratio (CR), the air–fuel ratio, and the spark timing. In the simulations, the severity of the pressure rise was evaluated based on the maximum pressure rise rate (MPRR). Lower compression ratios were assessed as a means to mitigate the auto-ignition while enabling a wider range of engine operation. The study showed that by lowering CR from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved at 9.4 bar indicated mean effective pressure (IMEP) conditions. Aiming to restrain the auto-ignition while maintaining good efficiency, growth in λ was examined under different CRs. The simulated data suggested that higher CRs require a higher λ, and due to practical limitations of the boosting system, λ at 4.0 was set as the limit. At a fixed spark timing, using a CR of 13.5 combined with λ at 3.33 resulted in an indicated thermal efficiency of 48.6%. It was found that under such lean conditions, the exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time where an indicated thermal efficiency exceeding 50% was achieved while maintaining a very low NOx level. Finally, the optimized case in the SI mode was used to investigate the effect of using the PC. For the current design of the PC, the results indicated that even though the mixture is lean, the flame speed of H2 is sufficiently high to burn the lean charge without using a PC. In addition, the PC design used in the current work induced a high MPRR inside the PC and MC, leading to an increased tendency to engine knock. The operation with PC also increased the heat transfer losses in the MC, leading to lower thermal efficiency compared to the SI mode. Consequently, the PC combustion mode needs further optimizations to be employed in hydrogen engine applications.

Funder

Saudi Aramco Research and Development Center FUELCOM3 program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference64 articles.

1. McBain, S., and Teter, J. (2022, November 24). Tracking Transport 2021; IEA: International Energy Agency. Available online: https://policycommons.net/artifacts/1887399/tracking-transport-2021/2636759/.

2. The hydrogen-fueled internal combustion engine: A technical review;White;Int. J. Hydrog. Energy,2006

3. Modelling of combustion and nitrogen oxide formation in hydrogen-fuelled internal combustion engines within a 3D CFD code;Knop;Int. J. Hydrog. Energy,2008

4. Increasing the power output of hydrogen internal combustion engines by means of supercharging and exhaust gas recirculation;Verhelst;Int. J. Hydrog. Energy,2009

5. Performance and combustion characteristics of a direct injection SI hydrogen engine;Mohammadi;Int. J. Hydrog. Energy,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3