Abstract
In an electrical microgrid, distributed renewable generation is one of the main tools used to achieve energy sustainability, cost efficiency and autonomy from the grid. However, reliance on intermittent power sources will lead to a mismatch between generation and demand, causing problems for microgrid management. Flexibility is key to reducing the mismatch and providing a stable operation. In such a context, demand response and energy storage systems are the main factors that contribute to flexibility in a microgrid. This paper provides an assessment of the technical and economic impacts of a microgrid at the building level, considering photovoltaic generation, battery energy storage and the use of electric vehicles in a vehicle-to-building system. The main novel contributions of this work are the quantification of system efficiencies and the provision of insights into the design and implementation of microgrids using real on-site data. Several tests were conducted using real on-site data to calculate the overall efficiencies of the different assets during their operation. An economic assessment was carried out to evaluate the potential benefits of coordinating battery storage with a vehicle-to-building system regarding the flexibility and cost-efficient operation of the microgrid. The results show that these two systems effectively increase the levels of self-consumption and available flexibility, but the usefulness of private electric vehicles in public buildings is constrained by the schedules and parking times of the users. Furthermore, economic benefits are highly dependent on the variability of tariffs and the costs of energy storage systems and their degradation, as well as the efficiency of the equipment used in the conversion chain.
Funder
Fundação para a Ciência e a Tecnologia
European Regional Development Fund and national funds
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference55 articles.
1. U.S. Department of Energy (2011). DOE Microgrid Workshop Report.
2. Why Microgrids Are Becoming an Important Part of the Energy Infrastructure;Electr. J.,2019
3. Hayden, E. (2013). Introduction to Microgrids, Securicon.
4. Gao, D.W. (2015). Energy Storage for Sustainable Microgrid, Academic Press.
5. (2022, October 16). California Independent System Operator, Flexible Resources Fast Facts 2016. Available online: https://www.caiso.com/documents/flexibleresourceshelprenewables_fastfacts.pdf.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献