Improving Structural Safety of L-Type Flange Joint for Wind Towers

Author:

Tran Thanh-TuanORCID,Kang SangkyunORCID,Lee Daeyong

Abstract

This paper focuses on the design modification of L-type flange joint geometry in wind towers, aiming to enhance its structural safety. For this aim, current design issues of existing flange joints are discussed. The numerical simulations indicate that the threaded bolt and flange-to-shell junction are critical locations where failure may happen. Further discussion to improve structural safety is applied for an existing 5 MW flange joint. Through parametric studies, the major factors influencing ultimate strength are identified. The results show that the aspect ratio plays an important role in increasing the structural safety of the flange joints, while the width of the flange segment weakens the stiffness of the flange-to-shell junction. The findings in this study are expected to provide a useful reference for designing the L-type flange joints in practical engineering fields.

Funder

National Research Foundation of Korea

Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference29 articles.

1. (2022, November 20). CWIF Wind Turbine Accident and Incident Compilation. Available online: https://docs.wind-watch.org/fullaccidents.pdf.

2. Simulation of Fatigue Failure in A Full Composite Wind Turbine Blade;Shokrieh;Compos. Struct.,2006

3. A Study on the Prediction of Lateral Buckling Load for Wind Turbine Tower Structures;Lee;Int. J. Precis. Eng. Manuf.,2012

4. Failure Analysis and Risk Management of a Collapsed Large Wind Turbine Tower;Chou;Eng. Fail. Anal.,2011

5. Development of jacket substructure systems supporting 3MW offshore wind turbine for deep water sites in South Korea;Tran;Int. J. Nav. Archit. Ocean Eng.,2022

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3