Numerical Study for Enhancement of Heat Transfer Using Discrete Metal Foam with Varying Thickness and Porosity in Solar Air Heater by LTNE Method

Author:

Diganjit RawalORCID,Gnanasekaran N.ORCID,Mobedi MoghtadaORCID

Abstract

A two-dimensional rectangular domain is considered with a discrete arrangement at equal distances from copper metal foam in a solar air heater (SAH). The local thermal non-equilibrium model is used for the analysis of heat transfer in a single-pass rectangular channel of SAH for different mass flow rates ranging from 0.03 to 0.05 kg/s at 850 W/m2 heat flux. Three different pores per inch (PPI) and porosities of copper metal foam with three different discrete thicknesses at equal distances are studied numerically. This paper evaluates the performance of SAH with 10 PPI 0.8769 porosity, 20 PPI 0.8567 porosity, and 30 PPI 0.92 porosity at 22 mm, 44 mm, and 88 mm thicknesses. The Nusselt number for 22 mm, 44 mm, and 88 mm thicknesses is 157.64%, 183.31%, and 218.60%, respectively, higher than the empty channel. The performance factor for 22 mm thick metal foam is 5.02% and 16.61% higher than for 44 mm and 88 mm thick metal foam, respectively. Hence, it is found that metal foam can be an excellent option for heat transfer enhancement in SAH, if it is designed properly.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference43 articles.

1. Performance Assessment of Flat-Plate Solar Collector with Internal Fins and Porous Media through an Integrated Approach of CFD and Experimentation;Kansara;Int. J. Therm. Sci.,2021

2. Sukhatme, S.P. (2018). Solar Energy, McGraw Hill. [4th ed.].

3. Garg, H.P. (2016). Solar Energy Fundamentals and Applications, Mc Graw Hill. [1st ed.].

4. Forced Convection in Partially Compliant Channel with Two Alternated Baffles;Ismael;Int. J. Heat Mass Transf.,2019

5. Analysis of Functionally Graded Metal Foams for the Accomplishment of Heat Transfer Enhancement under Partially Filled Condition in a Heat Exchanger;Jadhav;Energy,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3