Microbial Communities of Peaty Permafrost Tundra Soils along the Gradient of Environmental Conditions and Anthropogenic Disturbance in Pechora River Delta in the Eastern European Arctic

Author:

Kravchenko Irina1ORCID,Grouzdev Denis2ORCID,Sukhacheva Marina3ORCID,Minayeva Tatyana4,Sirin Andrey5ORCID

Affiliation:

1. Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia

2. SciBear OU, 10115 Tallinn, Estonia

3. Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia

4. Care for Ecosystems (CfE), 02826 Görlitz, Germany

5. Peatland Protection and Restoration Center, Institute of Forest Science, Russian Academy of Sciences, 143030 Uspenskoye, Russia

Abstract

Microbial communities play crucial roles in the global carbon cycle, particularly in peatland and tundra ecosystems experiencing climate change. The latest IPCC assessments highlight the anthropogenic changes in the Arctic peatlands and their consequences due to global climate change. These disturbances could trigger permafrost degradation and intensification of the biogeochemical processes resulting in greenhouse gas formation. In this study, we describe the variation in diversity and composition of soil microbial communities from shallow peat tundra sites with different anthropogenic loads and applied restoration interventions in the landscape of remnant fragments of terraces in the Pechora River delta, the Russian Arctic, Nenets Autonomous Okrug. The molecular approaches, including quantitative real-time PCR and high-throughput Illumina sequencing of 16S RNA and ITS, were applied to examine the bacterial and fungal communities in the soil samples. Anthropogenic disturbance leads to a significant decrease in the representation of Acidobacteria and Verrucomicrobia, while the proportion and diversity of Proteobacteria increase. Fungal communities in undisturbed sites may be characterized as monodominant, and anthropogenic impact increases the fungal diversity. Only the verrucomicrobial methanotrophs Methyloacifiphilaceae were found in the undisturbed sites, but proteobacterial methanotrophs Methylobacterium-Methylorubrum, as well as different methylotrophs affiliated with Methylophilaceae, and Beijerinckiaceae (Methylorosula), were detected in disturbed sites.

Funder

Belmont Forum

Russian Foundation for Basic Research

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference43 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M. (2021). IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., and van Diemen, R. (2019). IPCC, 2019. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, IPCC. Available online: https://www.ipcc.ch/srccl/.

3. Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva, T., Silvius, M., and Stringer, L. (2008). Assessment on Peatlands, Biodiversity and Climate Change: Main Report, Wetlands International.

4. Bonn, A., Allott, T., Evans, M., Joosten, H., and Stoneman, R. (2016). Peatland Restoration and Ecosystem Services: Science, Policy and Practice, Cambridge University Press.

5. Peatland biodiversity and climate change;Minayeva;Biol. Bull. Rev.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3