Improved Long-Term Forecasting of Passenger Flow at Rail Transit Stations Based on an Artificial Neural Network

Author:

Du Zitao1,Yang Wenbo1,Yin Yuna1,Ma Xinwei1ORCID,Gong Jiacheng1

Affiliation:

1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China

Abstract

When new rail stations or lines are planned, long-term planning for decades to come is required. The short-term passenger flow prediction is no longer of practical significance, as it only takes a few factors that affect passenger flow into consideration. To overcome this problem, we propose several long-term factors affecting the passenger flow of rail transit in this paper. We also create a visual analysis of these factors using ArcGIS and construct a long-term passenger flow prediction model for rail transit based on a class neural network using an SPSS Modeler. After optimizing relevant parameters, the prediction accuracy reaches 94.6%. We compare the results with other models and find that the neural network model has a good performance in predicting long-term rail transit passenger flow. Finally, the factors affecting passenger flow are ranked in terms of importance. It is found that among these factors, bicycles available for connection have the biggest influence on the passenger flow of rail stations.

Funder

Science and Technology Project of Hebei Provincial Department of Transportation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3