An Investigation into the Lateral Bearing Performance of a Single Pile Embedded at a Three-Dimensional Asymmetric Local Scour Site Using the Modified Strain Wedge Model

Author:

Wang Songyang1,Ma Jianjun12ORCID,Wang Chaosheng12,Liu Fengjun12,Li Da12ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang 471023, China

2. Engineering Technology Research Center of Safety and Protection of Buildings of Henan Province, Luoyang 471023, China

Abstract

The scouring effect is widely acknowledged as a primary contributor to the weakening in the bearing performance of offshore piles; it often results in asymmetric scour patterns around the pile. To meticulously examine the impact of three-dimensional asymmetric local scour on the lateral bearing performance of a single pile, the Boussinesq solution is employed to determine the effective stress within the soil encompassing the pile, considering the presence of a three-dimensional asymmetric local scour hole. Utilizing the strain wedge model, the calculation method for the lateral bearing performance of a single pile under the condition of three-dimensional asymmetric local scour is established. The validity of this approach is established, and parameter analysis unveils the effect of varying sizes of three-dimensional asymmetric scour holes on the mechanical properties and displacement performance of a single pile. The analysis reveals that, as scouring dimensions around the pile escalate, the impact of scouring on single-pile lateral displacement and internal forces intensifies, leading to a decrease in the lateral bearing performance of a single pile. At a constant scour depth, the bottom area of the upstream scour hole significantly influences the displacement performance of a single pile. When the bottom length Swb1 of the upstream scour hole grows by 1 time, 4 times, and 8 times, the lateral displacement of a single pile at a buried depth of 6 m is augmented by approximately 0.41%, 1.65%, and 2.06%, respectively. The simplified model obtained via the modified strain wedge model and Boussinesq solution can provide a theoretical basis for the preliminary design of a single pile under asymmetric scour hole conditions.

Funder

National Natural Science Foundation of China

Key R&D and Promotion Special Project in Henan Province-Science and Technology Research Project

Key R&D and Promotion Special Project in Henan Province-Science and Technology Research (joint fund) Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3