Application of Artificial Neural Networks to Numerical Homogenization of the Precast Hollow-Core Concrete Slabs

Author:

Gajewski Tomasz1ORCID,Skiba Paweł1ORCID

Affiliation:

1. Institute of Structural Analysis, Poznan University of Technology, 60-965 Poznan, Poland

Abstract

The main goal of this work is to combine the usage of the numerical homogenization technique for determining the effective properties of representative volume elements with artificial neural networks. The effective properties are defined according to the classical laminate theory. The purpose is to create and train a rapid surrogate model for the quick calculation of the mechanical properties of hollow concrete slabs. First, the homogenization algorithm was implemented, which determines membrane, bending and transverse shearing properties of a given parametrized hollow-core precast slab reinforced with steel bars. The algorithm uses the finite element mesh but does not require a formal solution of the finite element method problem. Second, the learning and training artificial intelligence framework was created and fed with a dataset obtained by optimal Latin hypercube sampling. In the study, a multilayer perceptron type of artificial neural network was used. This allows for obtaining rapid calculations of the effective properties of a particular hollow-core precast slab by using a surrogate model. In the paper, it has been proven that such a model, obtained via complex numerical calculations, gives a very accurate estimation of the properties and can be used in many practical tasks, such as optimization problems or computer-aided design decisions. Above all, the efficient setup of the artificial neural network has been sought and presented.

Publisher

MDPI AG

Reference32 articles.

1. Prestressed hollow core slabs for topped slim floors—Theory and research of the shear capacity;Derkowski;Eng. Struct.,2021

2. Identification of parameters of concrete damage plasticity constitutive model;Jankowiak;Found. Civ. Environ. Eng.,2005

3. Simplified Damage Plasticity Model for Concrete;Hejazi;Struct. Eng. Int.,2017

4. A plastic-damage model for concrete;Lubliner;Int. J. Solids Struct.,1989

5. Experimental investigation on cracking behavior of reinforced concrete tension ties;Chrysanidis;Case Stud. Constr. Mater.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3