Enhancing Insect Sound Classification Using Dual-Tower Network: A Fusion of Temporal and Spectral Feature Perception

Author:

He Hangfei1ORCID,Chen Junyang1ORCID,Chen Hongkun1,Zeng Borui1,Huang Yutong1,Zhaopeng Yudan1,Chen Xiaoyan12

Affiliation:

1. College of Information Engineering, Sichuan Agricultural University, Ya’an 625014, China

2. Sichuan Key Laboratory of Agricultural Information Engineering, Ya’an 625014, China

Abstract

In the modern field of biological pest control, especially in the realm of insect population monitoring, deep learning methods have made further advancements. However, due to the small size and elusive nature of insects, visual detection is often impractical. In this context, the recognition of insect sound features becomes crucial. In our study, we introduce a classification module called the “dual-frequency and spectral fusion module (DFSM)”, which enhances the performance of transfer learning models in audio classification tasks. Our approach combines the efficiency of EfficientNet with the hierarchical design of the Dual Towers, drawing inspiration from the way the insect neural system processes sound signals. This enables our model to effectively capture spectral features in insect sounds and form multiscale perceptions through inter-tower skip connections. Through detailed qualitative and quantitative evaluations, as well as comparisons with leading traditional insect sound recognition methods, we demonstrate the advantages of our approach in the field of insect sound classification. Our method achieves an accuracy of 80.26% on InsectSet32, surpassing existing state-of-the-art models by 3 percentage points. Additionally, we conducted generalization experiments using three classic audio datasets. The results indicate that DFSM exhibits strong robustness and wide applicability, with minimal performance variations even when handling different input features.

Funder

National College Student Innovation Training Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3