Evaluation of Deviations for Horizontal Thin Walls Determined by Optical and Contact Methods for Milled Samples of Nickel Alloy Inconel 625

Author:

Kurpiel Szymon1ORCID,Zagórski Krzysztof1ORCID,Cieślik Jacek1ORCID,Skrzypkowski Krzysztof2ORCID,Brostow Witold3

Affiliation:

1. Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, Mickiewicza 30 Ave., 30-059 Krakow, Poland

2. Faculty of Civil Engineering and Resource Management, AGH University of Krakow, Mickiewicza 30 Ave., 30-059 Krakow, Poland

3. Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, USA

Abstract

The aerospace industry is imposing increasingly strict dimensional tolerances, which is forcing continuous development in component manufacturing. Ensuring tight dimensional tolerances is difficult for thin-walled structures due to their reduced stiffness, which are increasingly used in the aerospace industry, where titanium alloys and nickel alloys, among others, dominate. Developments in this area are causing a search for machining conditions that provide sufficient quality characteristics including dimensional and shape accuracy. We discuss, herewith, thin wall deformations in the horizontal orientation of Inconel 625 nickel alloy samples in cross-sections perpendicular and parallel to the direction of tool feed motion. We measured dimensional and shape accuracy using a 3D optical scanner and also using a coordinate measuring machine to correlate these results. We compared the results obtained by the two methods and obtained the maximum discrepancy of the results equal to around 8%. Samples made with adaptive cylindrical milling had similar values of thin wall deviations, with the smallest deviations observed for the sample made with the tool for high-performance machining using adaptive cylindrical milling.

Funder

AGH University of Krakow

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3