Research on the Impact of Non-Uniform and Frequency-Dependent Normal Contact Stiffness on the Vibrational Response of Plate Structures

Author:

Yan Chang12,Fan Wen-Jie1,Wang Da-Miao13,Zhang Wen-Zhang4

Affiliation:

1. Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100049, China

4. Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Mechanical interfaces are prevalent in industries like aerospace and maritime, where the normal contact stiffness on these surfaces is a crucial component of the overall stiffness of mechanical structures. From the perspective of structural mechanics, normal contact stiffness significantly affects the dynamic response of mechanical structures and must be considered in mechanical design and simulation analysis. Essentially, the mechanical interface represents a typical type of nonlinear contact, characterized by both its non-uniform distribution and its frequency-dependent properties under external excitations. A plate structure was designed to study the distribution and frequency-dependent characteristics of normal contact stiffness on the mechanical interface. Experiments validated that the normal contact stiffness not only significantly increases the fundamental frequency of the plate but also alters its mode shapes. To replicate the experimental results in simulations, the BUSH elements were used to model the normal contact stiffness within the plate structure, arranging it non-uniformly and setting it to vary with frequency according to the plate’s mode shapes and frequency response. This method accurately replicated the plate’s mode shapes and response curves within the 0–1000 Hz range in simulations.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3