A Statistical Evaluation of the Connection between Underwater Optical and Acoustic Images

Author:

Chinicz Rebeca1ORCID,Diamant Roee12ORCID

Affiliation:

1. Hatter Department of Marine Technologies, University of Haifa, Haifa 3103301, Israel

2. Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Abstract

The use of Synthetic Aperture Sonar (SAS) in autonomous underwater vehicle (AUV) surveys has found applications in archaeological searches, underwater mine detection and wildlife monitoring. However, the easy confusability of natural objects with the target object leads to high false positive rates. To improve detection, the combination of SAS and optical images has recently attracted attention. While SAS data provides a large-scale survey, optical information can help contextualize it. This combination creates the need to match multimodal, optical–acoustic image pairs. The two images are not aligned, and are taken from different angles of view and at different times. As a result, challenges such as the different resolution, scaling and posture of the two sensors need to be overcome. In this research, motivated by the information gain when using both modalities, we turn to statistical exploration for feature analysis to investigate the relationship between the two modalities. In particular, we propose an entropic method for recognizing matching multimodal images of the same object and investigate the probabilistic dependency between the images of the two modalities based on their conditional probabilities. The results on a real dataset of SAS and optical images of the same and different objects on the seafloor confirm our assumption that the conditional probability of SAS images is different from the marginal probability given an optical image, and show a favorable trade-off between detection and false alarm rate that is higher than current benchmarks. For reproducibility, we share our database.

Funder

European Union

Publisher

MDPI AG

Reference25 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3