Tree Species Classification Based on Upper Crown Morphology Captured by Uncrewed Aircraft System Lidar Data

Author:

McGaughey Robert J.1ORCID,Kruper Ally23,Bobsin Courtney R.23,Bormann Bernard T.23

Affiliation:

1. Pacific Northwest Research Station, USDA Forest Service, Martinsville, IN 46151-9718, USA

2. School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA

3. Olympic Natural Resources Center, School of Environmental and Forest Sciences, University of Washington, Forks, WA 98331, USA

Abstract

The application of lidar data to assist with forest inventory is common around the world. However, the determination of tree species is still somewhat elusive. Lidar data collected using UAS (uncrewed aircraft systems) platforms offer high density point cloud data for areas from a few to several hundred hectares. General point cloud metrics computed using these data captured differences in the crown structure that proved useful for species classification. For our study, we manually adjusted plot and tree locations to align field trees and UAS lidar point data and computed common descriptive metrics using a small cylindrical sample of points designed to capture the top three meters and leader of each tree. These metrics were used to train a random forest classifier to differentiate between two conifer species, Douglas fir and western hemlock, common in the Pacific Northwest region of the United States. Our UAS lidar data had a single swath pulse density of 90 pulses/m2 and an aggregate pulse density of 556 pulses/m2. We trained classification models using both height and intensity metrics, height metrics alone, intensity metrics alone, and a small subset of five metrics, and achieved overall accuracies of 91.8%, 88.7%, 78.6%, and 91.5%, respectively. Overall, we showed that UAS lidar data captured morphological differences between the upper crowns of our two target species and produced a classification model that could be applied over large areas.

Funder

Washington State Legislature and the Washington Department of Natural Resources

Olympic Experimental State Forest managed by Washington State Department of Natural Resources

U.S. Department of Agriculture, Forest Service

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3