SAR Multi-Angle Observation Method for Multipath Suppression in Enclosed Spaces

Author:

Lin Yun1ORCID,Zhao Jiameng1,Wang Yanping1,Li Yang1,Shen Wenjie1ORCID,Bai Zechao1ORCID

Affiliation:

1. Radar Monitoring Technology Laboratory, School of Information Science and Technology, North China University of Technology, Beijing 100144, China

Abstract

Synthetic aperture radar (SAR) is a powerful tool for detecting and imaging targets in enclosed environments, such as tunnels and underground garages. However, SAR performance is degraded by multipath effects, which occur when electromagnetic waves are reflected by obstacles, such as walls, and interfere with the direct signal. This results in the formation of multipath ghost images, which obscure the true target and reduce the image quality. To overcome this challenge, we propose a novel method based on multi-angle observation. This method exploits the fact that the position of ghost images changes depending on the angle of the radar, while the position of the true target remains stable. By collecting and processing multiple data sets from different angles, we can eliminate the ghost images and enhance the target image. In addition, we introduce a center vector distance algorithm to address the complexity and computational intensity of existing multipath suppression algorithms. This algorithm, which defines the primary direction of multi-angle vectors from stable scattering centers as the center vector, processes and synthesizes multiple data sets from multi-angle observations. It calculates the distance of pixel intensity sequences in the composite data image from the center vector. Pixels within a specified threshold are used for imaging, and the final result is obtained. Simulation experiments and real SAR data from underground garages confirm the effectiveness of this method in suppressing multipath ghost images.

Funder

National Natural Science Foundation of China

Innovation Team Building Support Program of the Beijing Municipal Education Commission

Publisher

MDPI AG

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3