UAS Quality Control and Crop Three-Dimensional Characterization Framework Using Multi-Temporal LiDAR Data

Author:

Fareed Nadeem1ORCID,Das Anup Kumar2,Flores Joao Paulo2ORCID,Mathew Jitin Jose2,Mukaila Taofeek2,Numata Izaya1ORCID,Janjua Ubaid Ur Rehman1

Affiliation:

1. Geospatial Sciences Center of Excellence, Department of Geography and Geospatial Sciences, South Dakota State University, Brookings, SD 57006, USA

2. Department of Agricultural and Biosystem Engineering, North Dakota State University, Fargo, ND 58102, USA

Abstract

Information on a crop’s three-dimensional (3D) structure is important for plant phenotyping and precision agriculture (PA). Currently, light detection and ranging (LiDAR) has been proven to be the most effective tool for crop 3D characterization in constrained, e.g., indoor environments, using terrestrial laser scanners (TLSs). In recent years, affordable laser scanners onboard unmanned aerial systems (UASs) have been available for commercial applications. UAS laser scanners (ULSs) have recently been introduced, and their operational procedures are not well investigated particularly in an agricultural context for multi-temporal point clouds. To acquire seamless quality point clouds, ULS operational parameter assessment, e.g., flight altitude, pulse repetition rate (PRR), and the number of return laser echoes, becomes a non-trivial concern. This article therefore aims to investigate DJI Zenmuse L1 operational practices in an agricultural context using traditional point density, and multi-temporal canopy height modeling (CHM) techniques, in comparison with more advanced simulated full waveform (WF) analysis. Several pre-designed ULS flights were conducted over an experimental research site in Fargo, North Dakota, USA, on three dates. The flight altitudes varied from 50 m to 60 m above ground level (AGL) along with scanning modes, e.g., repetitive/non-repetitive, frequency modes 160/250 kHz, return echo modes (1n), (2n), and (3n), were assessed over diverse crop environments, e.g., dry corn, green corn, sunflower, soybean, and sugar beet, near to harvest yet with changing phenological stages. Our results showed that the return echo mode (2n) captures the canopy height better than the (1n) and (3n) modes, whereas (1n) provides the highest canopy penetration at 250 kHz compared with 160 kHz. Overall, the multi-temporal CHM heights were well correlated with the in situ height measurements with an R2 (0.99–1.00) and root mean square error (RMSE) of (0.04–0.09) m. Among all the crops, the multi-temporal CHM of the soybeans showed the lowest height correlation with the R2 (0.59–0.75) and RMSE (0.05–0.07) m. We showed that the weaker height correlation for the soybeans occurred due to the selective height underestimation of short crops influenced by crop phonologies. The results explained that the return echo mode, PRR, flight altitude, and multi-temporal CHM analysis were unable to completely decipher the ULS operational practices and phenological impact on acquired point clouds. For the first time in an agricultural context, we investigated and showed that crop phenology has a meaningful impact on acquired multi-temporal ULS point clouds compared with ULS operational practices revealed by WF analyses. Nonetheless, the present study established a state-of-the-art benchmark framework for ULS operational parameter optimization and 3D crop characterization using ULS multi-temporal simulated WF datasets.

Funder

United States Department of Agriculture (USDA)—National Institute of Food and Agriculture

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3