Monitoring Soil Salinity Classes through Remote Sensing-Based Ensemble Learning Concept: Considering Scale Effects

Author:

Chen Huifang1,Wu Jingwei1,Xu Chi2

Affiliation:

1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China

2. Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China

Abstract

Remote sensing (RS) technology can rapidly obtain spatial distribution information on soil salinization. However, (1) the scale effects resulting from the mismatch between ground-based “point” salinity data and remote sensing pixel-based “spatial” data often limit the accuracy of remote sensing monitoring of soil salinity, and (2) the same salinity RS monitoring model usually provides inconsistent or sometimes conflicting explanations for different data. Therefore, based on Landsat 8 imagery and synchronously collected ground-sampling data of two typical study regions (denoted as N and S, respectively) of the Yichang Irrigation Area in the Hetao Irrigation District for May 2013, this study used geostatistical methods to obtain “relative truth values” of salinity corresponding to the Landsat 8 pixel scale. Additionally, based on Landsat 8 multispectral data, 14 salinity indices were constructed. Subsequently, the Correlation-based Feature Selection (CFS) method was used to select sensitive features, and a strategy similar to the concept of ensemble learning (EL) was adopted to integrate the single-feature-sensitive Bayesian classification (BC) model in order to construct an RS monitoring model for soil salinization (Nonsaline, Slightly saline, Moderately saline, Strongly saline, and Solonchak). The research results indicated that (1) soil salinity exhibits moderate to strong variability within a 30 m scale, and the spatial heterogeneity of soil salinity needs to be considered when developing remote sensing models; (2) the theoretical models of salinity variance functions in the N and S regions conform to the exponential model and the spherical model, with R2 values of 0.817 and 0.967, respectively, indicating a good fit for the variance characteristics of salinity and suitability for Kriging interpolation; and (3) compared to a single-feature BC model, the soil salinization identification model constructed using the concept of EL demonstrated better potential for robustness and effectiveness.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Reference61 articles.

1. Remote sensing of soil salinity: Potentials and constraints;Metternicht;Remote Sens. Environ.,2003

2. Remote sensing of soil degradation: Progress and perspective;Wang;Int. Soil Water Conserv. Res.,2023

3. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics;Farifteh;Geoderma,2006

4. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI;Wang;Sci. Total Environ.,2020

5. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data;Abuelgasim;Remote Sens. Appl.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3