TDFPI: A Three-Dimensional and Full Parameter Inversion Model and Its Application for Building Damage Assessment in Guotun Coal Mining Areas, Shandong, China

Author:

Liu Hui123ORCID,Yuan Mingze4,Li Mei4ORCID,Li Ben4,Chen Ning4ORCID,Wang Jinzheng5,Li Xu2,Wu Xiaohu6ORCID

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China

2. School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

3. Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, Zhejiang 313000, China

4. Institute of Remote Sensing and Geographic Information System, Peking University, Beijing 100871, China

5. Shandong Energy Group, Luxi Mining Co., Ltd., Heze 274700, China

6. Shandong Institute of Advanced Technology, Jinan 250100, China

Abstract

Subsidence prediction is essential for preventing and controlling geohazards in coal mining areas. However, the Interferometric Synthetic Aperture Radar (InSAR) technique is limited in deriving the goaf displacements with a large gradient and fast deformation rates, hindering its application for potential risk evaluation over the mining areas. In this study, we proposed a three-dimensional and full parameter inversion (TDFPI) model to derive the large-gradient subsidence and then investigate its application for building damage assessment over coal mining areas. By taking the Guotun coal mine as the case study, the TDFPI model was demonstrated to have effectively predicted the large-gradient deformation of the mining areas and successfully evaluated the house damage in Chelou village, which agrees well with our field investigations. Specifically, the predicted subsidence results were validated with high fitting accuracy against field measurements, with RMSE of 0.083 m and 0.102 m, respectively, on observation line A and line F. In addition, the classified damage levels are highly consistent with in situ field surveys for the house cracks in Chelou village, presenting its practicality and effectiveness for building damage evaluation, and thus can provide a useful tool for potential risk assessment and prevention over the mining areas.

Funder

National Natural Science Foundation of China

Open Research Fund of Laboratory of Target Microwave Properties

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3