Efficient Local Refinement near Parametric Boundaries Using kd-Tree Data Structure and Algebraic Level Sets

Author:

Song Tao,Liao Huanyu,Subbarayan GaneshORCID

Abstract

In analysis of problems with parametric spline boundaries that are immersed or inserted into an underlying domain, the discretization on the underlying domain usually does not conform to the inserted boundaries. While the fixed underlying discretization is of great convenience as the immersed boundaries evolve, the field approximations near the inserted boundaries require refinement in the underlying domain, as do the quadrature cells. In this paper, a kd-tree data structure together with a sign-based and/or distance-based refinement strategy is proposed for local refinement near the inserted boundaries as well as for adaptive quadrature near the boundaries. The developed algorithms construct and utilize implicit forms of parametric Non-Uniform Rational B-Spline (NURBS) surfaces to algebraically (and non-iteratively) estimate distance as well as sign relative to the inserted boundary. The kd-tree local refinement is demonstrated to produce fewer sub-cells for the same accuracy of solution as compared to the classical quad/oct tree-based subdivision. Consistent with the kd-tree data structure, we describe a new a priori refinement algorithm based on the signed and unsigned distance from the inserted boundary. We first demonstrate the local refinement strategy coupled with the the kd-tree data structure by constructing Truncated Hierarchical B-spline (THB-spline) “meshes”. We next demonstrate the accuracy and efficiency of the developed local refinement strategy through adaptive quadrature near NURBS boundaries inserted within volumetric three-dimensional NURBS discretizations.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Social Distancing Detection Method for Public Area Crowds Based on YOLO;Artificial Intelligence and Robotics Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3