Semi-Automatic Multiparametric MR Imaging Classification Using Novel Image Input Sequences and 3D Convolutional Neural Networks

Author:

Li Bochong,Oka Ryo,Xuan Ping,Yoshimura Yuichiro,Nakaguchi Toshiya

Abstract

The role of multi-parametric magnetic resonance imaging (mp-MRI) is becoming increasingly important in the diagnosis of the clinical severity of prostate cancer (PCa). However, mp-MRI images usually contain several unaligned 3D sequences, such as DWI image sequences and T2-weighted image sequences, and there are many images among the entirety of 3D sequence images that do not contain cancerous tissue, which affects the accuracy of large-scale prostate cancer detection. Therefore, there is a great need for a method that uses accurate computer-aided detection of mp-MRI images and minimizes the influence of useless features. Our proposed PCa detection method is divided into three stages: (i) multimodal image alignment, (ii) automatic cropping of the sequence images to the entire prostate region, and, finally, (iii) combining multiple modal images of each patient into novel 3D sequences and using 3D convolutional neural networks to learn the newly composed 3D sequences with different modal alignments. We arrange the different modal methods to make the model fully learn the cancerous tissue features; then, we predict the clinical severity of PCa and generate a 3D cancer response map for the 3D sequence images from the last convolution layer of the network. The prediction results and 3D response map help to understand the features that the model focuses on during the process of 3D-CNN feature learning. We applied our method to Toho hospital prostate cancer patient data; the AUC (=0.85) results were significantly higher than those of other methods.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3