Structural and Optical Properties of Silicon Carbide Powders Synthesized from Organosilane Using High-Temperature High-Pressure Method

Author:

Ekimov Evgeny A.,Krivobok Vladimir S.,Kondrin Mikhail V.ORCID,Litvinov Dmitry A.,Grigoreva Ludmila N.,Koroleva Aleksandra V.,Zazymkina Darya A.ORCID,Khmelnitskii Roman A.,Aminev Denis F.,Nikolaev Sergey N.

Abstract

The development of new strategies for the mass synthesis of SiC nanocrystals with high structure perfection and narrow particle size distribution remains in demand for high-tech applications. In this work, the size-controllable synthesis of the SiC 3C polytype, free of sp2 carbon, with high structure quality nanocrystals, was realized for the first time by the pyrolysis of organosilane C12H36Si6 at 8 GPa and temperatures up to 2000 °C. It is shown that the average particle size can be monotonically changed from ~2 nm to ~500 nm by increasing the synthesis temperature from 800 °C to 1400 °C. At higher temperatures, further enlargement of the crystals is impeded, which is consistent with the recrystallization mechanism driven by a decrease in the surface energy of the particles. The optical properties investigated by IR transmission spectroscopy, Raman scattering, and low-temperature photoluminescence provided information about the concentration and distribution of carriers in nanoparticles, as well as the dominant type of internal point defects. It is shown that changing the growth modes in combination with heat treatment enables control over not only the average crystal size, but also the LO phonon—plasmon coupled modes in the crystals, which is of interest for applications related to IR photonics.

Funder

Russian Science Foundation

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3