Exendin-4-Conjugated Manganese Magnetism-Engineered Iron Oxide Nanoparticles as a Potential Magnetic Resonance Imaging Contrast Agent for Tracking Transplanted β-Cells

Author:

Juang Jyuhn-HuarngORCID,Shen Chia-RuiORCID,Wang Jiun-Jie,Wu Shu-Ting,Lin Sung-HanORCID,Chen Chen-Yi,Kao Chen-Wei,Chen Chen-Ling,Tsai Zei-Tsan,Wang Yun-Ming

Abstract

To specifically detect and trace transplanted islet β-cells by magnetic resonance imaging (MRI), we conjugated manganese magnetism-engineered iron oxide nanoparticles (MnMEIO NPs) with exendin-4 (Ex4) which specifically binds glucagon-like peptide-1 receptors on the surface of β-cells. The size distribution of MnMEIO and MnMEIO-Ex4 NPs were 67.8 ± 1.3 and 70.2 ± 2.3 nm and zeta potential 33.3 ± 0.5 and 0.6 ± 0.1 mV, respectively. MnMEIO and MnMEIO-Ex4 NPs with iron content ≤ 40 μg/mL did not affect MIN6 β-cell viability and insulin secretion. Positive iron staining was found in MIN6 β-cells loaded with MnMEIO-Ex4 NPs but not in those with MnMEIO NPs. A transmission electron microscope confirmed MnMEIO-Ex4 NPs were distributed in the cytoplasm of MIN6. In vitro MR images revealed a loss of signal intensity in MIN6 β-cells labeled with MnMEIO-Ex4 NPs but not with MnMEIO NPs. After transplantation of islets labeled with MnMEIO-Ex4, the graft under kidney capsule could be visualized on MRI as persistent hypointense areas up to 17 weeks. Moreover, histology of the islet graft showed positive staining for insulin, glucagon and iron. Our results indicate MnMEIO-Ex4 NPs are safe and effective for the detection and long-term monitoring of transplanted β-cells by MRI.

Funder

Chang Gung Memorial Hospital

Chang Gung Memorial Hospital-National Tsing Hua University Joint Research Program 2020

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3